NÚMEROS INTEIROS RELATIVOS
INTRODUÇÃO:
Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possivel
exemplos:
a) 5 - 3 = 2 (possível: 2 é um número natural)
b) 9 - 9 = 0 ( possível: 0 é um número natural)
c) 3 - 5 = ? ( impossível nos números naturais)
Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos,
-1, -2, -3,.........
lê-se: menos um ou 1 negativo
lê-se: menos dois ou dois negativo
lê-se: menos três ou três negativo
Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos numeros inteiros relativos, que será representado por Z.
Z = { .....-3, -2, -1, 0, +1, +2, +3,......}
Importante: os números inteiros positivos podem ser indicados sem o sinal de +.
exemplo
a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45
Sendo que o zero não é positivo nem negativo
EXERCICIOS
1) Observe os números e diga:
-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72
a) Quais os números inteiros negativos?
R: -15,-1,-93,-8,-72
b) Quais são os números inteiros positivos?
R: +6,+54,+12,+23,+72
2) Qual o número inteiro que não é nem positivo nem negativo?
R: É o zero
3) Escreva a leitura dos seguintes números inteiros:
a) -8 =(R: oito negativo)
b)+6 = (R: seis positivo)
c) -10 = (R: dez negativo)
d) +12 = (R: doze positivo)
e) +75 = (R: setenta e cinco positivo)
f) -100 = (R: cem negativo)
4) Quais das seguintes sentenças são verdadeiras?
a) +4 = 4 = ( V)
b) -6 = 6 = ( F)
c) -8 = 8 = ( F)
d) 54 = +54 = ( V)
e) 93 = -93 = ( F )
5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos:
a) 5° acima de zero = (R: +5)
b) 3° abaixo de zero = (R: -3)
c) 9°C abaixo de zero= (R: -9)
d) 15° acima de zero = ( +15)
REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA
Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos.
_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
exercícios
1) Escreva os números inteiros:
a) compreendidos entre 1 e 7 (R: 2,3,4,5,6)
b) compreendidos entre -3 e 3 (R: -2,-1,0,1,2)
c) compreendidos entre -4 e 2 ( R: -3, -2, -1, 0, 1)
d) compreendidos entre -2 e 4 (R: -1, 0, 1, 2, 3 )
e) compreendidos entre -5 e -1 ( R: -4, -3, -2)
f) compreendidos entre -6 e 0 (R: -5, -4, -3, -2, -1)
2) Responda:
a) Qual é o sucessor de +8? (R: +9)
b) Qual é o sucessor de -6? (R: -5)
c) Qual é o sucessor de 0 ? (R: +1)
d) Qual é o antecessor de +8? (R: +7)
e) Qual é o antecessor de -6? ( R: -7)
f) Qual é o antecessor de 0 ? ( R: -1)
3) Escreva em Z o antecessor e o sucessor dos números:
a) +4 (R: +3 e +5)
b) -4 (R: -5 e - 3)
c) 54 (R: 53 e 55 )
d) -68 (R: -69 e -67)
e) -799 ( R: -800 e -798)
f) +1000 (R: +999 e + 1001)
NÚMEROS OPOSTOS E SIMÉTRICOS
Na reta numerada, os números opostos estão a uma mesma distancia do zero.
-I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
Observe que cada número inteiro, positivo ou negativo, tem um correspondente com sinais deferentes
exemplo
a) O oposto de +1 é -1.
b) O oposto de -3 é +3.
c) O oposto de +9 é -9.
d) O oposto de -5 é +5.
Obsevação: O oposto de zero é o próprio zero.
EXERCÍCIOS
1) Determine:
a) O oposto de +5 = (R:-5)
b) O oposto de -9 = (R: +9)
c) O oposto de +6 = (R: -6)
d) O oposto de -6 = (R: +6)
e) O oposto de +18 = (R: -18)
f) O oposto de -15 = (R: +15)
g) O oposto de +234= (R: -234)
h) O oposto de -1000 = (R: +1000)
COMPARAÇÃO DE NÚMEROS INTEIROS ,
Observe a representação gráfica dos números inteiros na reta.
-I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
Dados dois números quaisquer, o que está à direita é o mair deles, e o que está à esquerda, o menor deles.
exemplos
a) -1 > -4, poque -1 está à direita de -4.
b) +2 > -4, poque +2 está a direita de -4
c) -4 menor -2 , poque -4 está à esquerda de -2.
d) -2 menor +1, poque -2 está à esquerda de +1.
exercicios
1) Qual é o número maior ?
a) +1 ou -10 (R:+1)
b) +30 ou 0 (R: +30)
c) -20 ou 0 ( R: 0)
d) +10 ou -10 (R: +10)
e) -20 ou -10 (R: -10)
f) +20 ou -30 (R: +20)
g) -50 ou +50 (R:+50)
h) -30 ou -15 (R:-15)
2) compare os seguites pares de números, dizendo se o primeiro é maior, menor ou igual
a) +2 e + 3 (menor)
b) +5 e -5 (maior)
c) -3 e +4 (nenor)
d) +1 e -1 (maior)
e) -3 e -6 ( maior)
f) -3 e -2 (menor)
g) -8 e -2 (menor)
h) 0 e -5 (maior)
i) -2 e 0 (nenor)
j) -2 e -4 (maior)
l) -4 e -3 (menor)
m) 5 e -5 (maior)
n) 40 e +40 ( igual)
o) -30 e -10 (menor)
p) -85 e 85 (menor)
q) 100 e -200 (maior)
r) -450 e 300 (menor)
s) -500 e 400 (menor)
3) coloque os números em ordem crescente.
a) -9,-3,-7,+1,0 (R: -9,-7,-3,0,1)
b) -2, -6, -5, -3, -8 (R: -8, -6,-5, -3,-2)
c) 5,-3,1,0,-1,20 (R: -3,-1,0,1,5,20)
d) 25,-3,-18,+15,+8,-9 (R: -18,-9,-3,+8,+15,+25)
e) +60,-21,-34,-105,-90 ( R: -105,-90,-34,-21, +60)
f) -400,+620,-840,+1000,-100 ( R: -840,-400,-100,+620,+1000)
4) Coloque os números em ordem decrescente
a) +3,-1,-6,+5,0 (R: +5,+3,0,-1,-6)
b) -4,0,+4,+6,-2 ( R: +6,+4,0,-2,-4)
c) -5,1,-3,4,8 ( R: 8,4,1,-3,-5)
d) +10,+6,-3,-4,-9,+1 (R: +10,+6,+1,-3,-4,-9)
e) -18,+83,0,-172, -64 (R: +83,0,-18,-64,-172)
f) -286,-740, +827,0,+904 (R: +904,+827,0,-286,-740)
ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS
ADIÇÃO
1) Adição de números positivos
A soma de dois números positivos é um número positivo.
EXEMPLO
a) (+2) + (+5) = +7
b) (+1) + (+4) = +5
c) (+6) + (+3) = +9
Simplificando a maneira de escrever
a) +2 +5 = +7
b) +1 + 4 = +5
c) +6 + 3 = +9
Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição e eliminamos os parêteses das parcelas.
2) Adição de números negativos
A soma de dois numeros negativos é um número negativo
Exemplo
a) (-2) + (-3) = -5
b) (-1) + (-1) = -2
c) (-7) + (-2) = -9
Simplificando a maneira de escrever
a) -2 - 3 = -5
b) -1 -1 = -2
c) -7 - 2 = -9
Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal de + na operação e eliminando os parênteses das parcelas.
EXERCÍCIOS
1) Calcule
a) +5 + 3 = (R:+8)
b) +1 + 4 = (R: +5)
c) -4 - 2 = (R: -6)
d) -3 - 1 = (R: -4)
e) +6 + 9 = (R: +15)
f) +10 + 7 = (R: +17)
g) -8 -12 = (R: -20)
h) -4 -15 = (R: -19)
i) -10 - 15 = (R: -25)
j) +5 +18 = (R: +23)
l) -31 - 18 = (R: -49)
m) +20 +40 = (R: + 60)
n) -60 - 30 = (R: -90)
o) +75 +15 = (R: +90)
p) -50 -50 = (R: -100)
2) Calcule:
a) (+3) + (+2) = (R: +5)
b) (+5) + (+1) = (R: +6)
c) (+7) + ( +5) = (R: +12)
d) (+2) + (+8) = (R: +10)
e) (+9) + (+4) = (R: +13)
f) (+6) + (+5) = (R: +11)
g) (-3) + (-2) = (R: -5)
h) (-5) + (-1) = (R: -6)
i) (-7) + (-5) = (R: -12)
j) (-4) + (-7) = (R: -11)
l) (-8) + ( -6) = (R: -14)
m) (-5) + ( -6) = (R: -11)
3) Calcule:
a) ( -22) + ( -19) = (R: -41)
b) (+32) + ( +14) = (R: +46)
c) (-25) + (-25) = (R: -50)
d) (-94) + (-18) = (R: -112)
e) (+105) + (+105) = (R: +210)
f) (-280) + (-509) = (R: -789)
g) (-321) + (-30) = (R: -350)
h) (+200) + (+137) = (R: +337)
3) Adição de números com sinais diferentes
A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.
exemplos
a) (+6) + ( -1) = +5
b) (+2) + (-5) = -3
c) (-10) + ( +3) = -7
simplificando a maneira de escrever
a) +6 - 1 = +5
b) +2 - 5 = -3
c) -10 + 3 = -7
Note que o resultado da adição tem o mesmo sinal que o número de maior valor absoluto
Observação:
Quando as parcelas são números opostos, a soma é igual a zero.
Exemplo
a) (+3) + (-3) = 0
b) (-8) + (+8) = 0
c) (+1) + (-1) = 0
simplificando a maneira de escrever
a) +3 - 3 = 0
b) -8 + 8 = 0
c) +1 - 1 = 0
4) Um dos numeros dados é zero
Quando um dos números é zero , a soma é igual ao outro número.
exemplo
a) (+5) +0 = +5
b) 0 + (-3) = -3
c) (-7) + 0 = -7
Simplificando a maneira de escrever
a) +5 + 0 = +5
b) 0 - 3 = -3
c) -7 + 0 = -7
exercícios
1) Calcule:
a) +1 - 6 = -5
b) -9 + 4 = -5
c) -3 + 6 = +3
d) -8 + 3 = -5
e) -9 + 11 = +2
f) +15 - 6 = +9
g) -2 + 14 = +12
h) +13 -1 = +12
i) +23 -17 = +6
j) -14 + 21 = +7
l) +28 -11 = +17
m) -31 + 30 = -1
2) Calcule:
a) (+9) + (-5) = +4
b) (+3) + (-4) = -1
c) (-8) + (+6) = -2d) (+5) + (-9) = -4
e) (-6) + (+2) = -4
f) (+9) + (-1) = +8
g) (+8) + (-3) = +5h) (+12) + (-3) = +9
i) (-7) + (+15) = +8
j) (-18) + (+8) = -10
i) (+7) + (-7) = 0
l) (-6) + 0 = -6
m) +3 + (-5) = -2
n) (+2) + (-2) = 0o) (-4) +10 = +6p) -7 + (+9) = +2
q) +4 + (-12) = -8
r) +6 + (-4) = +2
PROPRIEDADE DA ADIÇÃO
1) Fechamento : a soma de dois números inteiros é sempre um número inteiro
exemplo (-4) + (+7) =( +3)
2) Comutativa: a ordem das parcelas não altera a soma.
exemplo: (+5) + (-3) = (-3) + (+5)
3) Elemento neutro: o número zero é o elemento neutro da adição.
exemplo: (+8) + 0 = 0 + (+8) = +8
4) Associativa: na adição de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.
exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]
5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.
exemplo: (+7) + (-7) = 0
ADIÇÃO DE TRÊS OU MAIS NÚMEROS
Para obter a soma de três ou mais números adicionamos os dois primeiros e, em seguida, adicionamos esse resultado com o terceiro, e assim por diante.
exemplos
1) -12 + 8 - 9 + 2 - 6 =
= -4 - 9 + 2 - 6 =
= -13 + 2 - 6 =
= -11 - 6 =
= -17
2) +15 -5 -3 +1 - 2 =
= +10 -3 + 1 - 2 =
= +7 +1 -2 =
= +8 -2 =
= +6
Na adição de números inteiros podemos cancelar números opostos, poque a soma deles é zero.
INDICAÇÃO SIMPLIFICADA
a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.
exemplos
a) (+7) + (-5) = 7 - 5 = +2
b) (+6) + (-9) = 6 - 9 = -3
b) Podemos dispensar o sinal + da soma quando esta for positiva
exemplos
a) (-5) + (+7) = -5 + 7 = 2
b) (+9) + (-4) = 9 - 4 = 5
EXERCÍCIOS
1) Calcule
a) 4 + 10 + 8 = (R: 22)
b) 5 - 9 + 1 = (R: -3)
c) -8 - 2 + 3 = (R: -7)
d) -15 + 8 - 7 = (R: -14)
e) 24 + 6 - 12 = (R:+18)
f) -14 - 3 - 6 - 1 = (R: -24)
g) -4 + 5 + 6 + 3 - 9 = (R: + 1)
h) -1 + 2 - 4 - 6 - 3 - 8 = (R: -20)
i) 6 - 8 - 3 - 7 - 5 - 1 + 0 - 2 = (R: -20)
j) 2 - 10 - 6 + 14 - 1 + 20 = (R: +19)
L) -13 - 1 - 2 - 8 + 4 - 6 - 10 = (R: -36)
2) Efetue, cancelando os números opostos:
a) 6 + 4 - 6 + 9 - 9 = (R: +4)
b) -7 + 5 - 8 + 7 - 5 = (R: -8)
c) -3 + 5 + 3 - 2 + 2 + 1 = (R: +6)
d) -6 + 10 + 1 - 4 + 6= (R: +7)
e) 10 - 6 + 3 - 3 - 10 - 1 = (R: -7)
f) 15 - 8 + 4 - 4 + 8 - 15 = (R: 0)
3) Coloque em forma simplificada ( sem parênteses)
a) (+1) + (+4) +(+2) = (R: 1 +4 + 2)b) (+1) + (+8) + (-2) = (R: 1 + 8 - 2)
c) (+5) +(-8) + (-1) = (R: +5 - 8 - 1)
d) (-6) + (-2) + (+1) = (R: -6 - 2 + 1)
4) Calcule:
a) (-2) + (-3) + (+2) = (R: -3)
b) (+3) + (-3) + (-5) = (R: -5)c) (+1) + (+8) +(-2) = (R: +7 )
d) (+5) + (-8) + (-1) = (R: -4)
e) (-6) + (-2) + (+1) = (R: -7)
f) (-8) + ( +6) + (-2) = (R: -4)
g) (-7) + 6 + (-7) = (R: -8)
h) 6 + (-6) + (-7) = (R: -7)
i) -6 + (+9) + (-4) = (R: -1)
j) (-4) +2 +4 + (+1) = (R: +3)
5) Determine as seguintes somas
a) (-8) + (+10) + (+7) + (-2) = (R: +7)
b) (+20) + (-19) + (-13) + (-8) = (R: -20)
c) (-5) + (+8) + (+2) + (+9) = (R: +14)
d) (-1) + (+6) + (-3) + (-4) + (-5) = (R: -7)e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) = (R: -23)
6) Dados os números x= 6, y = 5 e z= -6, calcule
a) x + y = (R: +11)
b) y + z = (R: -4)
c) x + z = (R: -3)
SUBTRAÇÃO
A operação de subtração é uma operação inversa à da adição
Exemplos
a) (+8) - (+4) = (+8) + (-4) = = +4
b) (-6) - (+9) = (-6) + (-9) = -15
c) (+5) - (-2) = ( +5) + (+2) = +7
Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao primeiro o oposto do segundo.
Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a subtração é sempre possivel)
ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL NEGATIVO
Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto
veja:
a) -(+8) = -8 (significa o oposto de +8 é -8 )
b) -(-3) = +3 (significa o oposto de -3 é +3)
analogicamente:
a) -(+8) - (-3) = -8 +3 = -5
b) -(+2) - (+4) = -2 - 4 = -6
c) (+10) - (-3) - +3) = 10 + 3 - 3 = 10
conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o sínal do número que está dentro dos parênteses.
EXERCÍCIOS
1) Elimine os parênteses
a) -(+5) = -5
b) -(-2) = +2
c) - (+4) = -4d) -(-7) = +7
e) -(+12) = -12
f) -(-15) = +15
g) -(-42) = +42
h) -(+56) = -56
2) Calcule:
a) (+7) - (+3) = (R: +4)
b) (+5) - (-2) = (R: +7)
c) (-3) - ( +8) = (R: -11)
d) (-1) -(-4) = (R: +3)
e) (+3) - (+8) = (R: -5)
f) (+9) - (+9) = (R: 0 )
g) (-8) - ( +5) = (R: -13)
h) (+5) - (-6) = (R: +11)
i) (-2) - (-4) = (R: +2)
j) (-7) - (-8) = (R: +1)
l) (+4) -(+4) = (R: 0)
m) (-3) - ( +2) = (R: -5)
n) -7 + 6 = (R: -1)
o) -8 -7 = (R: -15)p) 10 -2 = (R: 8)
q) 7 -13 = (R: -6)
r) -1 -0 = (R: -1)
s) 16 - 20 = (R: -4)
t) -18 -9 = (R: -27)u) 5 - 45 = (R:-40)
v) -15 -7 = (R: -22)
x) -8 +12 = (R: 4)z) -32 -18 = (R:-50)
3) Calcule:
a) 7 - (-2) = (R: 9)
b) 7 - (+2) = (R: 5)
c) 2 - (-9) = (R: 11)
d) -5 - (-1) = (R: -4)
e) -5 -(+1) = (R: -6)
f) -4 - (+3) = (R: -7)
g) 8 - (-5) = (R: 13)
h) 7 - (+4) = (R: 3)
i) 26 - 45 = (R: -19)
j) -72 -72 = (R: -144)
l) -84 + 84 = (R: 0)
m) -10 -100 = (R: -110)
n) -2 -4 -1 = (R: -7)
o) -8 +6 -1 = (R: -3)
p) 12-7 + 3 = (R: 8)
q) 4 + 13 - 21 = (R: -4)
r) -8 +8 + 1 = (R: 1)
s) -7 + 6 + 9 = (R: 8)
t) -5 -3 -4 - 1 = (R: -13)
u) +10 - 43 -17 = (R: -50)
v) -6 -6 + 73 = (R: 61)
x) -30 +30 - 40 = (R: -40)
z) -60 - 18 +50 = (R: -25)
4) Calcule:
a) (-4) -(-2)+(-6) = (R: -8)
b) (-7)-(-5)+(-8) = (R: -10)
c) (+7)-(-6)-(-8) = (R: 21)
d) (-8) + (-6) -(+3) = (R: -17)
e) (-4) + (-3) - (+6) = (R: -13)
f) 20 - (-6) - (-8) = (R: 34)
g) 5 - 6 - (+7) + 1 = (R: -7)
h) -10 - (-3) - (-4) = (R: -3)
i) (+5) + (-8) = (R: -3)
j) (-2) - (-3) = (R: +1)
l) (-3) -(-9) = (R: +6)
m) (-7) - (-8) =(R: +1)
n) (-8) + (-6) - (-7) = (R: -7)
o) (-4) + (-6) + (-3) = (R: -13)
p) 15 -(-3) - (-1) = (R: +19)
q) 32 - (+1) -(-5) = (R: +36)
5) Calcule:
a) (-5) + (+2) - (-1) + (-7) = (R: -9)
b) (+2) - (-3) + (-5) -(-9) = (R: 9)
c) (-2) + (-1) -(-7) + (-4) = (R: 0)
d) (-5) + (-6) -(-2) + (-3) = (R: -12)
e) (+9) -(-2) + (-1) - (-3) = (R: 13)
f) 9 - (-7) -11 = (R: 5 )
g) -2 + (-1) -6 = (R: -9)
h) -(+7) -4 -12 = (R: -23)
i) 15 -(+9) -(-2) = (R: 8 )
j) -25 - ( -5) -30 = (R: -50)
l) -50 - (+7) -43 = (R: -100)
m) 10 -2 -5 -(+2) - (-3) = (R: 4)
n) 18 - (-3) - 13 -1 -(-4) = (R: 11)
o) 5 -(-5) + 3 - (-3) + 0 - 6 = (R: 10)p) -28 + 7 + (-12) + (-1) -4 -2 = (R: -40)
q) -21 -7 -6 -(-15) -2 -(-10) = (R: -11)
r) 10 -(-8) + (-9) -(-12)-6 + 5 = (R: 20)
ELIMINAÇÃO DOS PARENTESES
1) parenteses precedidos pelo sinal +
Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais dos números contidos nesses parênteses.
exemplo
a) + (-4 + 5) = -4 + 5
b) +(3 +2 -7) = 3 +2 -7
2) Parênteses precedidos pelo sinal -
Ao eliminarmos os parênteses e o sinal de - que os precede, devemos trocar os sinais dos números contidos nesses parênteses.
exemplo
a) -(4 - 5 + 3) = -4 + 5 -3
b) -(-6 + 8 - 1) = +6 -8 +1
EXERCICIOS
1) Elimine os parênteses:
a) +(-3 +8) = (R: -3 + 8)b) -(-3 + 8) = (R: +3 - 8)c) +(5 - 6) = (R: 5 -6 )
d) -(-3-1) = (R: +3 +1)e) -(-6 + 4 - 1) = (R: +6 - 4 + 1)
f) +(-3 -2 -1) = (R: -3 -2 -1 )g) -(4 -6 +8) = (R: -4 +6 +8)
h) + (2 + 5 - 1) = (R: +2 +5 -1)
2) Elimine os parênteses e calcule:
a) + 5 + ( 7 - 3) = (R: 9)
b) 8 - (-2-1) = (R: 11)
c) -6 - (-3 +2) = (R: -5)
d) 18 - ( -5 -2 -3 ) = (R: 28)
e) 30 - (6 - 1 +7) = (R: 18)
f) 4 + (-5 + 0 + 8 -4) = (R: 3)
g) 4 + (3 - 5) + ( -2 -6) = (R: -8)
h) 8 -(3 + 5 -20) + ( 3 -10) = (R: 13)
i) 20 - (-6 +8) - (-1 + 3) = (R: 16)
j) 35 -(4-1) - (-2 + 7) = (R: 27)
3) Calcule:
a) 10 - ( 15 + 25) = (R: -30)
b) 1 - (25 -18) = (R: -6)
c) 40 -18 - ( 10 +12) = (R: 0)
d) (2 - 7) - (8 -13) = (R: 0 )
e) 7 - ( 3 + 2 + 1) - 6 = (R: -5)
f) -15 - ( 3 + 25) + 4 = (R: -39)
g) -32 -1 - ( -12 + 14) = (R: -35)
h) 7 + (-5-6) - (-9 + 3) = (R: 2)
i) -(+4-6) + (2 - 3) = (R: 1)
j) -6 - (2 -7 + 1 - 5) + 1 = (R: 4)
EXPRESSÕES COM NÚMEROS INTEIROS RELATIVOS
Lembre-se de que os sinais de associação são eliminados obedecendo à seguinte ordem:
1°) PARÊNTESES ( ) ;
2°) COLCHETES [ ] ;
3°) CHAVES { } .
Exemplos:
1°) exemplo
8 + ( +7 -1 ) - ( -3 + 1 - 5 ) =
8 + 7 - 1 + 3 - 1 + 5 =
23 - 2 = 21
2°) exemplo
10 + [ -3 + 1 - ( -2 + 6 ) ] =
10 + [ -3 + 1 + 2 - 6 ] =
10 - 3 + 1 + 2 - 6 =
13 - 9 =
= 4
3°) exemplo
-17 + { +5 - [ +2 - ( -6 +9 ) ]} =
-17 + { +5 - [ +2 + 6 - 9]} =
-17 + { +5 - 2 - 6 + 9 } =
-17 +5 - 2 - 6 + 9 =
-25 + 14 =
= - 11
EXERCICIOS
a) Calcule o valor das seguintes expressões :
1) 15 -(3-2) + ( 7 -4) = (R: 17)
2) 25 - ( 8 - 5 + 3) - ( 12 - 5 - 8) = (R: 20 )
3) ( 10 -2 ) - 3 + ( 8 + 7 - 5) = (R: 15)
4) ( 9 - 4 + 2 ) - 1 + ( 9 + 5 - 3) = (R: 17)
5) 18 - [ 2 + ( 7 - 3 - 8 ) - 10 ] = (R: 30 )
6) -4 + [ -3 + ( -5 + 9 - 2 )] = (R: -5)
7) -6 - [10 + (-8 -3 ) -1] = (R: -4)
8) -8 - [ -2 - (-12) + 3 ] = (R: -21)9) 25 - { -2 + [ 6 + ( -4 -1 )]} = (R: 26)
10) 17 - { 5 - 3 + [ 8 - ( -1 - 3 ) + 5 ] } = (R: -2)
11) 3 - { -5 -[8 - 2 + ( -5 + 9 ) ] } = (R: 18)
12) -10 - { -2 + [ + 1 - ( - 3 - 5 ) + 3 ] } = (R: -20)
13) { 2 + [ 1 + ( -15 -15 ) - 2] } = (R: -29)
14) { 30 + [ 10 - 5 + ( -2 -3)] -18 -12} = (R: 0 )
15) 20 + { [ 7 + 5 + ( -9 + 7 ) + 3 ] } = (R: 33)
16) -4 - { 2 + [ - 3 - ( -1 + 7) ] + 2} = (R: 1)17) 10 - { -2 + [ +1 + ( +7 - 3) - 2] + 6 } = (R: 3 )
18) -{ -2 - [ -3 - (-5) + 1 ]} - 18 = (R: -13)
19) -20 - { -4 -[-8 + ( +12 - 6 - 2 ) + 2 +3 ]} = (R: -15)
20) {[( -50 -10) + 11 + 19 ] + 20 } + 10 = (R: 0 )
MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS INTEIROS
MULTIPLICAÇÃO
1) multiplicação de dois números de sinais iguais
observe o exemplo
a) (+5) . (+2) = +10
b) (+3) . (+7) = +21
c) (-5) . (-2) = +10
d) (-3) . (-7) = +21
conclusão: Se os fatores tiverem sinais iguais o produto é positivo
2) Multiplicação de dois produtos de sinais diferentes
observe os exemplos
a) (+3) . (-2) = -6
b) (-5) . (+4) = -20
c) (+6) . (-5) = -30
d) (-1) . (+7) = -7
Conclusão : Se dois produtos tiverem sinais diferentes o poduto é negativo
Regra pratica dos sinais na multiplicação
SINAIS IGUAIS: o resultado é positivo +
a) (+) . (+) = (+)
b) (-) . (-) = (+)
SINAIS DIFERENTES: o resultado é negativo -
a) (+) . (-) = (-)
b) (-) . (+) = (-)
EXERCÍCIOS
1) Efetue as multiplicações
a) (+8) . (+5) = (R: 40)
b) (-8) . ( -5) = (R: 40)
c) (+8) .(-5) = (R: -40)
d) (-8) . (+5) = (R: -40)
e) (-3) . (+9) = (R: -27)
f) (+3) . (-9) = (R: -27)
g) (-3) . (-9) = (R: 27)
h) (+3) . (+9) = (R: 27)i) (+7) . (-10) = (R: -70)
j) (+7) . (+10) = (R: 70)
l) (-7) . (+10) = (R: -70)
m) (-7) . (-10) = (R: 70)
n) (+4) . (+3) = (R: 12)
o) (-5) . (+7) = (R: -35)
p) (+9) . (-2) = (R: -18)
q) (-8) . (-7) = (R: 56)
r) (-4) . (+6) = (R: -24)
s) (-2) .(-4) = (R: 8 )
t) (+9) . (+5) = (R: 45)
u) (+4) . (-2) = (R: -8)
v) (+8) . (+8) = (R: 64)x) (-4) . (+7) = (R: -28)
z) (-6) . (-6) = (R: 36)
2) Calcule o produto
a) (+2) . (-7) = (R: -14)
b) 13 . 20 = (R: 260)
c) 13 . (-2) = (R: -26)
d) 6 . (-1) = (R: -6)
e) 8 . (+1) = (R: 8)
f) 7 . (-6) = (R: -42)
g) 5 . (-10) = (R: -50)
h) (-8) . 2 = (R: -16)
i) (-1) . 4 = (R: -4)
j) (-16) . 0 = (R: 0)
MULTIPLICAÇAO COM MAIS DE DOIS NÚMEROS
Multiplicamos o primeiro número pelo segundo, o produto obtido pelo terceiro e assim sucessivamente, até o ultimo fator
exemplos
a) (+3) . (-2) . (+5) = (-6) . (+5) = -30
b) (-3) . (-4) . (-5) . (-6) = (+12) . (-5) . (-6) = (-60) . (-6) = +360
EXERCÍCIOS
1) Determine o produto:
a) (-2) . (+3) . ( +4) = (R: -24)
b) (+5) . (-1) . (+2) = (R: -10)
c) (-6) . (+5) .(-2) = (R: +60)
d) (+8) . (-2) .(-3) = (R: +48)
e) (+1) . (+1) . (+1) .(-1)= (R: -1)
f) (+3) .(-2) . (-1) . (-5) = (R: -30)
g) (-2) . (-4) . (+6) . (+5) = (R: 240)
h) (+25) . (-20) = (R: -500)
i) -36) .(-36 = (R: 1296)
j) (-12) . (+18) = (R: -216)
l) (+24) . (-11) = (R: -264)
m) (+12) . (-30) . (-1) = (R: 360)
2) Calcule os produtos
a) (-3) . (+2) . (-4) . (+1) . (-5) = (R: -120)
b) (-1) . (-2) . (-3) . (-4) .(-5) = (R: -120)
c) (-2) . (-2) . (-2) . (-2) .(-2) . (-2) = (R: 64)
d) (+1) . (+3) . (-6) . (-2) . (-1) .(+2)= (R: -72)
e) (+3) . (-2) . (+4) . (-1) . (-5) . (-6) = (R: 720)
f) 5 . (-3) . (-4) = (R: +60)
g) 1 . (-7) . 2 = (R: -14)
h) 8 . ( -2) . 2 = (R: -32)
i) (-2) . (-4) .5 = (R: 40)
j) 3 . 4 . (-7) = (R: -84)
l) 6 .(-2) . (-4) = (R: +48)
m) 8 . (-6) . (-2) = (R: 96)
n) 3 . (+2) . (-1) = (R: -6)
o) 5 . (-4) . (-4) = (R: 80)
p) (-2) . 5 (-3) = (R: 30)
q) (-2) . (-3) . (-1) = (R:-6)
r) (-4) . (-1) . (-1) = (R: -4)
3) Calcule o valor das expressões:
a) 2 . 3 - 10 = (R: -4)
b) 18 - 7 . 9 = (R: -45)
c) 3. 4 - 20 = (R: -8)
d) -15 + 2 . 3 = (R: -9)
e) 15 + (-8) . (+4) = (R: -17)
f) 10 + (+2) . (-5) = (R: 0 )
g) 31 - (-9) . (-2) = (R: 13)
h) (-4) . (-7) -12 = (R: 16)
i) (-7) . (+5) + 50 = (R: 15)
j) -18 + (-6) . (+7) = (R:-60)
l) 15 + (-7) . (-4) = (R: 43)
m) (+3) . (-5) + 35 = (R: 20)
4) Calcule o valor das expressões
a) 2 (+5) + 13 = (R: 23)
b) 3 . (-3) + 8 = (R: -1)
c) -17 + 5 . (-2) = (R: -27)
d) (-9) . 4 + 14 = (R: -22)
e) (-7) . (-5) - (-2) = (R: 37)
f) (+4) . (-7) + (-5) . (-3) = (R: -13)
g) (-3) . (-6) + (-2) . (-8) = (R: 34)
h) (+3) . (-5) - (+4) . (-6) = (R: 9)
PROPRIEDADES DA MULTIPLICAÇÃO
1) Fechamento: o produto de dois números inteiros é sempre um número inteiro.
exemplo: (+2) . (-5) = (-10)
2) Comultativa: a ordem dos fatores não altera o produto.
exemplo: (-3) . (+5) = (+5) . (-3)
3) Elemento Neutro: o número +1 é o elemento neutro da multiplicação.
Exemplos: (-6) . (+1) = (+1) . (-6) = -6
4) Associativa: na multiplicação de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.
exemplo: (-2) . [(+3) . (-4) ] = [ (-2) . (+3) ] . (-4)
5) Distributiva
exemplo: (-2) . [(-5) +(+4)] = (-2) . (-5) + (-2) . (+4)
DIVISÃO
Você sabe que a divisão é a operação inversa da multiplicação
Observe:
a) (+12) : (+4) = (+3) , porque (+3) . (+4) = +12
b) (-12) : (-4) = (+3) , porque (+3) . (-4) = -12
c) (+12) : (-4) = (-3) , porque (-3) . (-4) = +12
d) (-12) : (+4) = (-3), porque (-3) . (+4) = -12
REGRA PRÁTICA DOS SINAIS NA DIVISÃO
As regras de sinais na divisão é igual a da multiplicação:
SINAIS IGUAIS: o resultado é +
(+) : (+) = (+)
(-) : (-) = (-)
SINAIS DIFERENTES : o resultado é -
(+) : (-) = (-)
(-) : (+) = (-)
EXERCÍCIOS
1) Calcule o quocientes:
a) (+15) : (+3) = (R: 5 )
b) (+15) : (-3) = (R: -5)
c) (-15) : (-3) = (R: 5)
d) (-5) : (+1) = (R: -5)
e) (-8) : (-2) = (R: 4)
f) (-6) : (+2) = (R: -3)
g) (+7) : (-1) = (R: -7)
h) (-8) : (-8) = (R: 1)
f) (+7) : (-7) = (R: -1)
2) Calcule os quocientes
a) (+40) : (-5) = (R: -8)
b) (+40) : (+2) = (R: 20)
c) (-42) : (+7) = (R: -6)
d) (-32) : (-8)= (R: 4)e) (-75) : (-15) = (R: 5)
f) (-15) : (-15) = (R: 1)
g) (-80) : (-10) = (R: 8)
h) (-48 ) : (+12) = (R: -4)
l) (-32) : (-16) = (R: 2)
j) (+60) : (-12) = (R: -5)
l) (-64) : (+16) = (R: -4)
m) (-28) : (-14) = (R: 2)n) (0) : (+5) = (R: 0)o) 49 : (-7) = (R: -7)
p) 48 : (-6) = (R: -8)
q) (+265) : (-5) = (R: -53)
r) (+824) : (+4) = (R: 206)
s) (-180) : (-12) = (R: 15)
t) (-480) : (-10) = (R: 48)
u) 720 : (-8) = (R: -90)
v) (-330) : 15 = (R: -22)
3) Calcule o valor das expressões
a) 20 : 2 -7 = (R: 3 )
b) -8 + 12 : 3 = (R: -4)
c) 6 : (-2) +1 = (R: -2)
d) 8 : (-4) - (-7) = (R: 5)
e) (-15) : (-3) + 7 = (R: 12)
f) 40 - (-25) : (-5) = (R: 35)
g) (-16) : (+4) + 12 = (R: 8)
h) 18 : 6 + (-28) : (-4) = ( R: 10)
i) -14 + 42 : 3 = (R: 0)j) 40 : (-2) + 9 = (R: -11)
l) (-12) 3 + 6 = (R: 2)
m) (-54) : (-9) + 2 = (R: 8)
n) 20 + (-10) . (-5) = (R: 70)
o) (-1) . (-8) + 20 = (R: 28 )
p) 4 + 6 . (-2) = (R: -8)
q) 3 . (-7) + 40 = (R: 19)
r) (+3) . (-2) -25 = (R: -31)s) (-4) . (-5) + 8 . (+2) = (R: 36)t) 5: (-5) + 9 . 2 = (R: 17)u) 36 : (-6) + 5 . 4 = (R: 14)
by: /jmpmat13.blogspot.com
que mais deve professor
ResponderExcluirta maluco meu irmao?,esse tanto de dever ,po aja dever
ResponderExcluirSó aprende praticando ....
ResponderExcluire outra todos os exercícios tem a resposta.
eeeee seu preguissozoooooooooooooooooooooooooo
ResponderExcluirque e Iam PROFESSOR?TAO PEDINDO O TELEFONE DELE PRA QUE
ResponderExcluirMuito interessante o Blog, com as atividades....
ResponderExcluirCaramba professor! é coisa de + mas é muito interessante.
ResponderExcluirGostei
ResponderExcluirmuito
desse
blog
beijos
tchau
adorei amei este blog que o senhor fez bjs tchau
ResponderExcluirprofessor o senhor e mesmo muito inteligente adorei este blog bjs
ResponderExcluirOie David, seu blog está muito legal >.< Que saudades da 6ª série, rs...
ResponderExcluirOlha só, algumas vezes ao clicar no link do jogos, pode dar erro lá na página... Você poderia criar uma página aqui no blog só para jogos matemáticos, seria legal... Ah, te dando uma dica, como sei que você ama o que faz, seria legal também um lugar onde seus alunos pudessem tirar dúvidas, fazerem perguntas, etc... Para isso há um site que é o www.formspring.me, lá você se cadastra e responde a perguntas destinadas a Matemática que os alunos te fizerem. Bjm >.<
iae professor a ana clara ta sendo uma pessima repesentante
ResponderExcluiriae professor cade a equação e amanda da 6A
ResponderExcluirprofessor vai ser 20 reais o passeio mesmo?
ResponderExcluirbora i des horas eu vou pagar segunda ai nois
conversamos
e a timoteu
cade a equação professor?
ResponderExcluirbeijos
professor e muito + eu tentarei ta melhor do mundoooooooooo!!!!!!!!!!!!!!!!!!!
ResponderExcluir